Bennett RD, Norman SM, Maier VP. Intermediate steps in the biosynthesis of abscisic acid from farnesyl pyrophosphate in Cercospora rosicola. Phytochemistry. 1990;29(11):3473–7. https://doi.org/10.1016/0031-9422(90)85260-M.
Article
CAS
Google Scholar
Bouaicha N, Amade P, Puel D, Roussakis C. Zarzissine, a new cytotoxic guanidine alkaloid from the Mediterranean sponge Anchinoe paupertas. J Nat Prod. 1994;57(10):1455–7. https://doi.org/10.1021/NP50112A019.
Article
CAS
Google Scholar
Chen JJ, Lin WJ, Shieh PC, Chen IS, Peng CF, Sung PJ. A New Long-Chain Alkene and Antituberculosis Constituents from the Leaves of Pourthiaea lucida. Chem Biodivers. 2010;7(3):717–21. https://doi.org/10.1002/CBDV.200900198.
Article
CAS
Google Scholar
Chen HH, Chen YT, Huang YW, Tsai HJ, Kuo CC. 4-Ketopinoresinol, a novel naturally occurring ARE activator, induces the Nrf2/HO-1 axis and protects against oxidative stress-induced cell injury via activation of PI3K/AKT signaling. Free Radic Biol Med. 2012;52(6):1054–66. https://doi.org/10.1016/J.FREERADBIOMED.2011.12.012.
Article
CAS
Google Scholar
DaSilva NA, Nahar PP, Ma H, Eid A, Wei Z, Meschwitz S, Zawia NH, Slitt AL, Seeram NP. Pomegranate ellagitannin-gut microbial-derived metabolites, urolithins, inhibit neuroinflammation in vitro. Nutr Neurosci. 2019;22(3):185–95. https://doi.org/10.1080/1028415X.2017.1360558.
Article
CAS
Google Scholar
DellaGreca M, di Marino C, Zarrelli A, D’Abrosca B. Isolation and phytotoxicity of apocarotenoids from Chenopodium album. J Nat Prod. 2004;67(9):1492–5. https://doi.org/10.1021/NP049857Q.
Article
CAS
Google Scholar
Devanathan K, Stalin AN. Artocarpus heterophyllus Lam (Moraceae). 2020. p. 1–11. https://doi.org/10.1007/978-3-030-14116-5_67-1/COVER.
Book
Google Scholar
Elhendawy MA, Wanas AS, Radwan MM, Azzaz NA, Toson ES, Elsohly MA. Chemical and biological studies of cannabis sativa roots. Med Cannabis Cannabinoids. 2019;1(2):104–11. https://doi.org/10.1159/000495582.
Article
Google Scholar
Fujita T, Kadoya Y, Aota H, Nakayama M. A new phenylpropanoid glucoside and other constituents of Oenanthe javanica. Bioscience Biotechnol Biochem. 1995;59(3):526–8. https://doi.org/10.1271/BBB.59.526.
Article
CAS
Google Scholar
Gao JM, Wang M, Liu LP, Wei GH, Zhang AL, Draghici C, Konishi Y. Ergosterol peroxides as phospholipase A2 inhibitors from the fungus Lactarius hatsudake. Phytomedicine. 2007;14(12):821–4. https://doi.org/10.1016/J.PHYMED.2006.12.006.
Article
CAS
Google Scholar
Goda Y, Shibuya M, Sankawa U. Inhibitors of prostaglandin biosynthesis from Mucuna birdwoodiana. Chem Pharm Bull. 1987;35(7):2675–7. https://doi.org/10.1248/CPB.35.2675.
Article
CAS
Google Scholar
Guo M, An F, Yu H, Wei X, Hong M, Lu Y. Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, NLRP3 inflammasome activation-mediated IL-1β secretion and pyroptosis. Biomed Pharmacother. 2017;96:129–36. https://doi.org/10.1016/J.BIOPHA.2017.09.097.
Article
CAS
Google Scholar
He H, Li H, Akanji T, Niu S, Luo Z, Li D, Seeram NP, Wu P, Ma H. Synthesis and biological evaluations of oleanolic acid indole derivatives as hyaluronidase inhibitors with enhanced skin permeability. J Enzyme Inhib Med Chem. 2021;36(1):1665–78. https://doi.org/10.1080/14756366.2021.1956487.
Article
CAS
Google Scholar
Hinge VK, Paknikar SK, Das KG, Bose AK, Bhattacharyya SC. Terpenoids-LXXXVI. Structure of epi-ψ-taraxastanonol and epi-ψ-taraxastanediol. Tetrahedron. 1966;22(8):2861–8. https://doi.org/10.1016/S0040-4020(01)99077-5.
Article
CAS
Google Scholar
Huh S, Kim YS, Jung E, Lim J, Jung KS, Kim MO, Lee J, Park D. Melanogenesis inhibitory effect of fatty acid alkyl esters isolated from Oxalis triangularis. Biol Pharm Bull. 2010;33(7):1242–5. https://doi.org/10.1248/BPB.33.1242.
Article
CAS
Google Scholar
Ito J, Chang FR, Wang HK, Park YK, Ikegaki M, Kilgore N, Lee KH. Anti-AIDS agents. 48.(1) Anti-HIV activity of moronic acid derivatives and the new melliferone-related triterpenoid isolated from Brazilian propolis. J Nat Prod. 2001;64(10):1278–81. https://doi.org/10.1021/NP010211X.
Article
CAS
Google Scholar
Jin D, Dai K, Chen J. Secondary metabolites profiled in cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes. Sci Rep. 2020;10(1):1–14.
Google Scholar
Kadowaki E, Yoshida Y, Baba N, Nakajima S. Feeding stimulative activity of steroidal and secoiridoid glucosides and their hydrolysed derivatives toward the olive weevil (Dyscerus perforatus). Z Fur Naturforschung - Sect C J Biosci. 2003;58(5–6):441–5. https://doi.org/10.1515/ZNC-2003-5-625/HTML.
Article
CAS
Google Scholar
Kishino S, Ogawa J, Ando A, Shimizu S. Conjugated α-linolenic acid production from α-linolenic acid by Lactobacillus plantarum AKU 1009a. Eur J Lipid Sci Technol. 2003;105(10):572–7. https://doi.org/10.1002/EJLT.200300806.
Article
CAS
Google Scholar
Kornpointner C, Sainz Martinez A, Marinovic S, Haselmair-Gosch C, Jamnik P, Schröder K, Löfke C, Halbwirth H. (2021). Chemical composition and antioxidant potential of Cannabis sativa L. roots.Industr Crops Prod.165.https://doi.org/10.1016/j.indcrop.2021.113422.
L’homme L, Esser N, Riva L, Scheen A, Paquot N, Piette J, Legrand-Poels S. Unsaturated fatty acids prevent activation of NLRP3 inflammasome in human monocytes/macrophages. J Lipid Res. 2013;54(11):2998–3008. https://doi.org/10.1194/jlr.M037861.
Article
CAS
Google Scholar
Li J, Wang G, Qin Y, Zhang X, Wang HF, Liu HW, Zhu LJ, Yao XS. Neuroprotective constituents from the aerial parts of Cannabis sativa L. subsp. sativa. RSC Adv. 2020;10(53):32043–9. https://doi.org/10.1039/D0RA04565A.
Article
CAS
Google Scholar
Lima KSB, da Cruz Silva MEG, de Lima Araújo TC, da Fonseca Silva CP, Santos BL, de Araújo Ribeiro LA, Menezes PMN, Silva MG, Lavor ÉM, Silva FS, Nunes XP. Cannabis roots: Pharmacological and toxicological studies in mice. J Ethnopharmacol. 2021;271(10):113868.
Article
CAS
Google Scholar
Liu C, Cai A, Li H, Deng N, Cho BP, Seeram NP, Ma H. Characterization of molecular interactions between cannabidiol and human plasma proteins (serum albumin and γ-globulin) by surface plasmon resonance, microcalorimetry, and molecular docking. J Pharm Biomed Anal. 2022;214:114750. https://doi.org/10.1016/J.JPBA.2022.114750.
Article
CAS
Google Scholar
Liu C, Li H, Xu F, Jiang X, Ma H, Seeram N. (2021). Cannabidiol protects human skin keratinocytes from hydrogen-peroxide-induced oxidative stress via modulation of the caspase-1–IL-1β axis. J Nat Prod, 84(5), 1563–1572. https://doi.org/10.1021/acs.jnatprod.1c00083.
Liu C, Ma H, Slitt L, A., & Seeram P, N. (2020). Inhibitory effect of cannabidiol on the activation of NLRP3 inflammasome is associated with its modulation of the P2X7 receptor in human monocytes. J Nat Prod, 0(0). https://doi.org/10.1021/acs.jnatprod.0c00138.
Ma H, Li H, Liu C, Seeram NP. Evaluation of cannabidiol’s inhibitory effect on alpha-glucosidase and its stability in simulated gastric and intestinal fluids. J Cannabis Res. 2021;3(1):20. https://doi.org/10.1186/S42238-021-00077-X.
Article
Google Scholar
Ma H, Xu F, Liu C, Seeram NP. A network pharmacology approach to identify potential molecular targets for cannabidiol’s anti-inflammatory activity. Cannabis Cannabinoid Res. 2021;6(4):288–99. https://doi.org/10.1089/CAN.2020.0025/SUPPL_FILE/SUPPL_FIGS5.PDF.
Article
CAS
Google Scholar
Ma Z, Huang Z, Zhang L, Li X, Xu B, Xiao Y, Shi X, Zhang H, Liao T, Wang P. Vanillic acid reduces pain-related behavior in knee osteoarthritis rats through the inhibition of NLRP3 inflammasome-related synovitis. Front Pharmacol. 2021;11:2445. https://doi.org/10.3389/FPHAR.2020.599022/XML/NLM.
Article
Google Scholar
Marchetti L, Brighenti V, Rossi MC, Sperlea J, Pellati F, Bertelli D (2019). Use of 13C-qNMR spectroscopy for the analysis of non-psychoactive cannabinoids in fibre-type Cannabis sativa L. (Hemp). Molecules, 24(6). https://doi.org/10.3390/MOLECULES24061138.
Mohammed F, Sibley P, Guillaume D, Abdulwali N. Chemical composition and mineralogical residence of maple syrup: a comprehensive review. Food Chem. 2022;374:131817. https://doi.org/10.1016/J.FOODCHEM.2021.131817.
Article
CAS
Google Scholar
Pizzolatti MG, Verdi LG, Brighente IMC, Neiva TDJC, Schripsema J, Filho RB. Anticoagulant effect and constituents of Baccharis illinita. Nat Prod Commun. 2006;1(1):37–42. https://doi.org/10.1177/1934578X0600100107.
Article
CAS
Google Scholar
Pollastro F, Minassi A, Fresu LG. Cannabis phenolics and their bioactivities. Curr Med Chem. 2018;25(10):1160–85. https://doi.org/10.2174/0929867324666170810164636.
Article
CAS
Google Scholar
Puopolo T, Liu C, Ma H, Seeram NP. Inhibitory effects of cannabinoids on acetylcholinesterase and butyrylcholinesterase enzyme activities. Med Cannabis Cannabinoids. 2022;5(1):85–94. https://doi.org/10.1159/000524086.
Article
Google Scholar
Queirós CSGP, Cardoso S, Ferreira J, Miranda I, Lourenço MJv, Pereira H. Characterization of Hakea sericea fruits regarding chemical composition and extract properties. Waste Biomass Valoriz. 2020;11(9):4859–70. https://doi.org/10.1007/S12649-019-00818-3.
Article
Google Scholar
Radwan MM, ElSohly MA, Slade D, Ahmed SA, Khan IA, Ross SA. Biologically active cannabinoids from high-potency Cannabis sativa. J Nat Prod. 2009;72(5):906–11. https://doi.org/10.1021/NP900067K.
Article
CAS
Google Scholar
Rhee MH, Vogel Z, Barg J, Bayewitch M, Levy R, Hanuš L, Breuer A, Mechoulam R. Cannabinol derivatives: binding to cannabinoid receptors and inhibition of adenylylcyclase. J Med Chem. 1997;40(20):3228–33. https://doi.org/10.1021/JM970126F.
Article
CAS
Google Scholar
Ryz NR, Remillard DJ, Russo EB. Cannabis roots: a traditional therapy with future potential for treating inflammation and pain. Cannabis Cannabinoid Res. 2017;2(1):210–6. https://doi.org/10.1089/can.2017.0028.
Article
CAS
Google Scholar
Sakakibara I, Ikeya Y, Hayashi K, Okada M, Maruno M. Three acyclic bis-phenylpropane lignanamides from fruits of Cannabis sativa. Phytochemistry. 1995;38(4):1003–7. https://doi.org/10.1016/0031-9422(94)00773-M.
Article
CAS
Google Scholar
Sampson PB. Phytocannabinoid pharmacology: medicinal properties of Cannabis sativa constituents aside from the “Big Two.” J Nat Prod. 2021;84(1):142–60. https://doi.org/10.1021/ACS.JNATPROD.0C00965.
Article
CAS
Google Scholar
Seal T. Antioxidant and Antiinflammatory Activities of Different Solvent Extracts and Isolated Compounds of Ipomoea pes-caprae (L) Sweet of Sunderban Mangrove Eco-complex. Asian J Chem. 2013;25(9):4997–5000. https://doi.org/10.14233/ajchem.2013.14226.
Article
Google Scholar
Sirikantaramas S, Taura F. (2017). Cannabinoids: biosynthesis and biotechnological applications. Cannabis Sativa L - Bot Biotechnol. 183–206. https://doi.org/10.1007/978-3-319-54564-6_8/FIGURES/10.
Smania EFA, Monache D, Smania F, Yunes A, Cuneo RS. Antifungal activity of sterols and triterpenes isolated from Ganoderma annulare. Fitoterapia. 2003;74(4):375–7. https://doi.org/10.1016/S0367-326X(03)00064-9.
Article
CAS
Google Scholar
Sousa GF, Ferreira FL, Duarte LP, Silva GDF, Messias MCTB, Vieira Filho SA. Structural determination of 3β,11β-dihydroxyfriedelane from Maytenus robusta (Celastraceae) by 1D and 2D NMR. J Chem Res. 2012;36(4):203–5. https://doi.org/10.3184/174751912X13318236224684.
Article
CAS
Google Scholar
Stout JM, Boubakir Z, Ambrose SJ, Purves RW, Page JE. The hexanoyl-CoA precursor for cannabinoid biosynthesis is formed by an acyl-activating enzyme in Cannabis sativa trichomes. Plant J. 2012;71(3):353–65. https://doi.org/10.1111/j.1365-313X.2012.04949.x.
Article
CAS
Google Scholar
Villar-Lorenzo A, Ardiles AE, Arroba AI, Hernández-Jiménez E, Pardo V, López-Collazo E, Jiménez IA, Bazzocchi IL, González-Rodríguez Á, Valverde ÁM. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages. Toxicol Appl Pharmcol. 2016;313:57–67. https://doi.org/10.1016/J.TAAP.2016.10.004.
Article
CAS
Google Scholar
Wang RP, Lin HW, Li LZ, Gao PY, Xu Y, Song SJ. Monoindole alkaloids from a marine sponge Mycale fibrexilis. Biochem Syst Ecol. 2012;43:210–3. https://doi.org/10.1016/J.BSE.2012.03.016.
Article
CAS
Google Scholar
Wang G, Zhu L, Zhao Y, Gao S, Sun D, Yuan J, Huang Y, Zhang X, Yao X. A natural product from Cannabis sativa subsp. sativa inhibits homeodomain-interacting protein kinase 2 (HIPK2), attenuating MPP +-induced apoptosis in human neuroblastoma SH-SY5Y cells. Bioorg Chem. 2017;72:64–73. https://doi.org/10.1016/J.BIOORG.2017.03.011.
Article
CAS
Google Scholar
Wu D, Chen Y, Sun Y, Gao Q, Li H, Yang Z, Wang Y, Jiang X, Yu B. Target of MCC950 in Inhibition of NLRP3 inflammasome activation: a literature review. Inflammation. 2020;43(1):17–23. https://doi.org/10.1007/S10753-019-01098-8.
Article
CAS
Google Scholar
Xu J, Yuan C, Wang G, Luo J, Ma H, Xu L, Mu Y, Li Y, Seeram NP, Huang X, Li L. Urolithins Attenuate LPS-Induced Neuroinflammation in BV2Microglia via MAPK, Akt, and NF-κB Signaling Pathways. J Agric Food Chem. 2018;66(3):571–80. https://doi.org/10.1021/ACS.JAFC.7B03285.
Article
CAS
Google Scholar
Xu Z, Wang C, Yan H, Zhao Z, You L, Ho CT. (2022). Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.). Food Chem. 373(Pt A) https://doi.org/10.1016/J.FOODCHEM.2021.131396.
Xue Y, Yao G, Hu Z, Luo Z, Wang Y, Zhang Y. Chemical constituents from the leaves of Premna microphylla Turcz. Researchgate Net. 2013;6(3):4. https://doi.org/10.5246/jcps.2013.05.063.
Article
CAS
Google Scholar
Yoon JY, Kim JH, Baek KS, Kim GS, Lee SE, Lee DY, Choi JH, Kim SY, Park HB, Sung GH, Lee KR, Cho JY, Noh HJ. A direct protein kinase B-targeted anti-inflammatory activity of cordycepin from artificially cultured fruit body of Cordyceps militaris. Pharmacogn Mag. 2015;11(43):477–85. https://doi.org/10.4103/0973-1296.160454.
Article
CAS
Google Scholar
Zhou W, Guo S. Components of the sclerotia of Polyporus umbellatus. Chem Nat Compd. 2009;45(1):124–5. https://doi.org/10.1007/S10600-009-9229-X.
Article
CAS
Google Scholar