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Abstract

Background Cannabis sativa cultivars can be classified as marijuana or hemp, depending on its amount of the psy-
choactive cannabinoid A°-tetrahydrocannabinolic acid (THCA). Hemp Cheungsam is a non-drug type Cannabis sativa
that is characterized by low THCA content. However, the transcripts and expression profile of cannabinoid biosynthe-
sis pathway genes of hemp Cheungsam have not been investigated.

Methods RNA-sequencing (RNA-seq) was performed on three different tissue types (flower, leaf, and stem) of hemp
Cheungsam to understand their transcriptomes. The expression of cannabinoid biosynthesis pathway genes was fur-
ther analyzed in each tissue type. Multiple sequence alignment and conserved domain analyses were used to investi-
gate the homologs of cannbinoid biosynthesis genes.

Results We found that the cannabinoid biosynthesis pathway was mainly expressed in the flowers of hemp Cheung-
sam, similar to other Cannabis cultivars. However, expression of cannabidiolic acid (CBDA) synthase was much

higher than THCA synthase and cannabichromenic acid (CBCA) synthase, suggesting that the transcription profile
favors CBDA biosynthesis. Sequence analysis of cannabinoid biosynthesis pathway genes suggested the identity

of orthologs in hemp Cheungsam.

Conclusions Cannabinoid biosynthesis in hemp Cheungsam mostly occurs in the flowers, compared to other plant
organs. While CBDA synthase expression is high, THCA and CBCA synthase expression is considerably low, indicating
lesser THCA biosynthesis and thus low THCA content. Sequence analysis of key genes (CBDA, THCA, and CBCA syn-
thases) of the cannabinoid biosynthetic pathway indicates that orthologs are present in hemp Cheungsam.
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Introduction

Cannabis is a widely cultivated plant with a long his-
tory dating back more than 6000 years (Atakan 2012;
Tahir et al. 2021). The Cannabis genus is composed of
three species (Cannabis sativa, Cannabis indica, and
Cannabis ruderalis), with varying levels of specific can-
nabinoids [Cannabidiolic acid (CBDA), A°-tetrahydro-
cannabinolic acid (THCA), and cannabichromenic acid
(CBCA)] depending on the species and variety (Atakan
2012; Tahir et al. 2021). Furthermore, with extensive
interbreeding between species, the chemical composi-
tion of a Cannabis plant cannot be easily determined
based on its morphology alone (Tahir et al. 2021). Can-
nabis can be further classified into marijuana or hemp,
depending on the amount of psychoactive cannabi-
noid THCA (Hilderbrand 2018; Hussain et al., 2021).
As marijuana has a higher THCA content, it has been
cultivated for use as a recreational and medicinal drug
(Hussain et al.,, 2021). Hemp, which has lower THCA
content, was cultivated for food and industrial pur-
poses, including the production of hemp seeds and
hemp oil, textiles, and even biodegradable plastics
(Cerino et al. 2021; Hussain et al., 2021).

While C. sativa can produce more than 180 different
cannabinoid compounds, the three most abundant can-
nabinoids, THCA, CBDA, and CBCA have been well
documented (Tahir et al. 2021). The cannabinoid bio-
synthetic pathway stems from hexanoic acid, which is
produced from the oxidative cleavage of other fatty acids
(Gilck and Mgller 2020). Hexanoic acid then undergoes
a multistep conversion to olivetolic acid (OLA), which is
one of two main substrates for cannabinoid biosynthesis
(Giilck and Mgller 2020; Tahir et al. 2021). The other sub-
strate is geranyl pyrophosphate (GPP), a methylerythritol
4-phosphate (MEP) pathway intermediate that is formed
by GPP synthase (GPS) catalyzing the condensation of
dimethylallyl pyrophosphate and isopentenyl pyrophos-
phate (Giilck and Mogller 2020; Tahir et al. 2021). Aro-
matic prenyltransferases (PT) catalyze the conversion
of OLA and GPP to cannabigerolic acid (CBGA), which
is further modified to other cannabinolic acids (CBDA,
THCA, CBCA) by specific synthases (Giilck and Mgller
2020; Tahir et al. 2021). CBDA, THCA, and CBCA can
then undergo non-enzymatic decarboxylation to form
cannabidiol, A°-tetrahydrocannabinol, and cannabi-
chromene (CBD, THC, and CBC), respectively (Tahir
et al. 2021).

As the differentiation between marijuana and hemp
is based on THCA content, a previous study has inves-
tigated THCA synthase polymorphisms (and thus the
presence of active THCA synthase) as a main factor for
identifying marijuana and hemp plants (Roman et al.
2022). However, this was not a completely accurate

Page 2 of 19

method for predicting THCA content in each tested cul-
tivar (Roman et al. 2022). This can be possibly explained
by a complex ancestry of interbreeding and introgres-
sion between Cannabis cultivars. Furthermore, gene
duplication and deletion during the breeding process
may have affected THCA production. In another study,
the CBDRx cultivar was shown to be from a primary
marijuana lineage but had a CBDA synthase (CBDAS)
gene from hemp and no THCA synthase (THCAS) gene
(Grassa et al. 2021).

Here, we investigated the transcriptome of non-drug
type hemp “Cheungsam’; which is a hybrid between the
local variety of Korean hemp and the IH3 hemp cultivar
from the Netherlands (Moon et al. 2002). Hemp Cheung-
sam is a predominant hemp variety in Korea, as its lower
THCA content makes it a preferrable C. sativa variety
for Korean traditional medicine (Moon et al. 2002; Doh
et al, 2019). Hemp Cheungsam samples were dissected
into three different tissue types (flower, leaf, and stem)
to better understand the transcriptome and cannabinoid
biosynthetic pathway in various parts of the plant. We
showed that similar to other Cannabis cultivars, cannabi-
noid biosynthesis genes in hemp Cheungsam were mostly
expressed in the flowers. Multiple sequence alignment
and conserved domain analyses also verified that the
identified transcripts were mostly full-length homologs
of the cannabinoid biosynthesis pathway genes.

Materials and methods

Plant growth conditions

Cannabis sativa L. seeds (Cheungsam) were soaked
in 1% hydrogen peroxide solutions as liquid germina-
tion media. After one day, a fresh 1% H,O, solution was
added after the removal of the old solution. Seeds were
soaked for three more days at room temperature again in
the dark. Germinated seedlings were transplanted from
the H,O, solutions to soil and transferred to a growth
chamber (26 £1 °C, 16 h light:8 h dark cycle, 51% humid-
ity, and light intensity of 258 pmol-m~2sec™!). Hemp
Cheungsam plants were grown in long day (LD) condi-
tion (16 h light:8 h dark) during the early stages of vege-
tative growth for up to 3 weeks. Subsequently, in the later
vegetative growth stage, the light period was increased to
18 h light:6 h dark for another 8 to 10 weeks. To induce
a transition to the reproductive stage, the photoperiod
was reduced to 12 h light:12 h dark for approximately
5 weeks.

Extraction of RNA and RNA-sequencing (RNA-seq)

Branches of hemp Cheungsam with fully developed
female flowers were harvested. All branches were imme-
diately dissected after harvesting to obtain the leaf, stem,
and flower samples. The developed cola with female
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flowers were collected as the flower sample. Palmate
leaves from each branch were consolidated as the leaf
sample. The stem sample comprised of the dissected
branch without any leaf or flower tissue. All samples were
flash frozen in liquid nitrogen, then ground into a fine
powder for RNA extraction.

Total RNA was extracted from all samples and puri-
fied using RNeasy Plant Mini Kit (Qiagen, Germany)
according to the manufacturer’s instructions, including
the optional on-column DNase digestion step (Qiagen,
Germany). The purity and concentration of total RNA
were determined using a Nanodrop spectrophotometer
(DS-11 spectrophotometer, DeNovix, USA). Only RNA
samples with A260/280 ratios between 1.8 and 2.2, and
A260/230 ratios higher than 2.0 were kept for RNA-seq.
RNA-seq was performed by Macrogen (Korea) using the
manufacturer’s reagents and protocol.

The RNA-seq was performed with paired-end sequenc-
ing with 101 base pair (bp) read length. RNA library
was constructed using TruSeq Stranded Total RNA
Library Prep Plant Kit (Illumina, USA). The samples were
sequenced using NovaSeq6000 system with flow cell type
S4 (Illumina, USA) at Macrogen (Korea).

The raw sequence data of the RNA-seq was firstly sub-
jected to a quality check using FastQC (version 0.11.7,
Andrews 2010). After which, the adaptor sequences were
trimmed via the Trimmomatic (version 0.38, Bolger et al.
2014). Bases at the rear ends with base quality<3 were
trimmed. In addition, sliding window trimming with
window size=4 was used to remove bases with mean
quality <15. Subsequently, the trimmed sequences that
were < 36 bp were also removed from further analysis.

Trimmed reads were mapped to the Cannabis sativa
reference genome c¢sI0 (https://www.ncbi.nlm.nih.gov/
datasets/genome/GCF_900626175.2/), using HISAT2
(version 2.1.0, Kim et al. 2019). Spliced read mapping
was performed through Bowtie2 aligner (version 2.3.4.1,
Langmead and Salzberg 2012). Transcript assembly onto
the cs10 reference genome was done using StringTie (ver-
sion 2.1.3b, Kovaka et al. 2019), to obtain the expression
profile per sample.

Identification of differentially expressed genes (DEGs)

and hierarchical clustering

Firstly, the transcriptome data was filtered to remove
genes with FPKM <1 for all samples. To calculate fold-
change, 0.001 was added to all FPKM values. The average
FPKM per tissue type was calculated and used to calcu-
late gene expression fold-change between different plant
tissues. DEGs were identified by fold-change>2 or<0.5
and Student’s ¢-test P-value <0.05. Volcano plot for each
pairwise comparison were generated using MATLAB
version R2020a (The MathWorks Inc., USA).
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DEGs identified from each pairwise comparison were
plotted in a Venn diagram using the Interactivenn webt-
ool (Heberle et al. 2015; http://www.interactivenn.net/).
DEGs from the intersection of each Venn diagram were
compiled and their respective FPKM values were plotted
into a hierarchical clustering heatmap using MATLAB
version R2020a (The MathWorks Inc., USA). Gene clus-
ters identified from hierarchical clustering were used for
further bioinformatics analysis.

Bioinformatics analysis for gene ontology (GO) terms

and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways

Protein sequences associated with each DEG were used
as the query for protein Basic Local Alignment Search
Tool (BLASTP) searches, which were carried out locally
using BLAST + (Camacho et al. 2009). BLASTP searches
were against Arabidopsis protein sequences from the
TAIR10 database (Lamesch et al., 2012). The output with
the lowest e-value was chosen as the Arabidopsis best-fit
ortholog of the hemp Cheungsam gene. Ortholog genes
were filtered for e-value<0.05 to remove results of low
confidence.

The respective Arabidopsis ortholog genes were then
used to identify GO terms and enriched KEGG path-
ways using the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) analysis (Huang et al.
2009; Sherman et al. 2022). GO term and KEGG pathway
information were plotted in Excel.

Multiple sequence alignment and sequence analysis
Multiple sequence alignments and generation of phyloge-
netic trees were performed on MegAlign 15 (DNASTAR,
Inc,, USA). Alignment was carried out using the Clustal
W tool on MegAlign 15. Protein domains were identi-
fied using Batch CD-Search (Marchler-Bauer and Bryant,
2004; Marchler-Bauer et al, 2011; https://www.ncbi.nlm.
nih.gov/Structure/bwrpsb/bwrpsb.cgi) and MOTIF search
tool (GenomeNet, https://www.genome.jp/tools/motif/).
Prediction of PTS1 sequence in protein sequences was per-
formed using the PTS1 predictor (Neuberger et al. 2003;
https://mendel.imp.ac.at/pts1/). The C-terminal amino acid
sequence (last 12 residues) of each protein sequence was
used as the input for PTS1 prediction. Prediction of protein
subcellular localization was carried out using WoLF PSORT
(Horton et al., 2007; https://wolfpsort.hgc.jp/).

Results and discussion

Pedigree, significance, and morphology of hemp
‘Cheungsam’

Hemp Cheungsam is a variety of hemp (C. sativa) that
originated from Korea (Moon et al. 2002). The variety
was developed as a hybrid between the Korean local


https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_900626175.2/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_900626175.2/
http://www.interactivenn.net/
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
https://www.genome.jp/tools/motif/
https://mendel.imp.ac.at/pts1/
https://wolfpsort.hgc.jp/

Sng et al. Journal of Cannabis Research (2024) 6:35

variety hemp and IH3 hemp from the Netherlands
(Moon et al. 2002). As a predominant hemp variety in
Korea, hemp Cheungsam has relatively low THCA is to
CBDA content, resulting it to be a classified as a non-
drug type Cannabis (Moon et al. 2002).

As the cultivation and consumption of Cannabis plants
are highly regulated (Ransing et al. 2022), the develop-
ment of Cannabis varieties is likely to be geographically
restricted. Thus, in Korea, hemp Cheungsam is preferred
over other local C. sativa varieties for its use in Korean
traditional herbal medicine, due to its lower THCA con-
tent (Doh et al., 2019). The seeds and sprouts of hemp
Cheungsam were also reported to contain compounds
that are beneficial for human health such as Quercetin
and Rutin, which have antioxidant and anti-inflamma-
tory properties (Aloo et al.,, 2023a; Aloo et al., 2023b).
Furthermore, CBDA from hemp Cheungsam has been
used to enhance the anti-cancer activity of cabozantinib
against hepatocellular carcinoma (Jeon et al. 2023).

Hemp Cheungsam typically undergoes 10 to 13 weeks
of vegetative growth. After which, the plant transitions
to the flowering induction stage of 3 to 4 weeks. Hemp
Cheungsam developed palmately compound leaves along
its stem (Fig. 1A), which is similar to other varieties of C.
sativa (Anderson and de la Paz 2021). Each compound
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leaf is made of green pinnate leaflets with serrated
leaf margin (Fig. 1B). At the reproductive stage, hemp
Cheungsam developed cola with female flowers, which
started developing approximately 2 weeks after flower
induction (Fig. 1C) and were fully developed at 5 weeks
after flower induction (Fig. 1D).

RNA-seq analysis of flower, leaf, and stem tissues of hemp
Cheungsam
To understand the effects of gene transcription on its
physiology and production of cannabinoids in differ-
ent tissues of hemp Cheungsam, mature hemp plants
with female flowers were dissected into flower, leaf, and
stem tissues for RNA-seq analysis (Fig. 1). After remov-
ing adapter sequences and trimming low quality reads,
all RNA-seq samples had more than 97% clean reads
(Table 1). In addition, high Phred quality scores indicated
high sequencing quality, as Q20 scores were above 97.8%
and Q30 scores were above 93.3% in all samples (Table 1).
Reproducibility between replicates was verified by the
Pearson correlation coefficient between samples (Fig.
S1). Replicates of each tissue type showed a high corre-
lation coefficient between replicates and a lower corre-
lation between tissue types (Fig. S1). Similarly, samples
from each tissue type formed distinct clusters in the PCA

Fig. 1 Phenotype of hemp Cheungsam. A Hemp Cheungsam during the vegetative growth stage. B Top-down view of hemp Cheungsam,
showing palmate leaves. C Female flowers developing at the cola at 2 w after flower induction. D Developed female flowers at the cola at 5w

after flower induction. Black (A, B) and white (C, D) scale bars, 1 cm
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Table 1 Summary of RNA-seq reads
Sample Total reads Clean reads GC (%) Q20 (%) Q30 (%)
Flower
Replicate 1 76,227,318 74,237,116 4436 98.08 93.86
Replicate 2 71,180,562 69,652,226 44.68 98.82 95.82
Replicate 3 65,076,956 63,640,172 4461 98.78 9571
Leaf
Replicate 1 71,336,918 69,508,966 4113 97.88 9338
Replicate 2 65,078,200 63,559,016 41.90 98.79 95.78
Replicate 3 63,037,978 61,667,536 4191 98.72 95.53
Stem
Replicate 1 88,895,932 86,601,516 4249 98.09 93.86
Replicate 2 69,761,540 68,156,156 42.38 98.69 95.44
Replicate 3 76,021,312 74,357,434 42.76 98.85 95.87

plot, suggesting that the transcriptomes of flower, leaf,
and stem tissues differ greatly from each other (Fig. 2A).
Furthermore, while all three tissue types varied in PCl1,
flower samples had distinct PC2 values from leaf and
stem samples (Fig. 2A).

Identification of differentially expressed genes (DEGs)
Genes with FPKM <1 in all samples were excluded from
further analysis due to their extremely low expression.
To identify DEGs, pairwise comparison of FPKM values
were carried out between the various plant tissues. DEGs
were identified by filtering for genes with fold change >2
or<0.5 and P-value < 0.05 (Table S1). In addition, the fold
change and P-value of all genes were visualized as vol-
cano plots to better identify the transcriptomic differ-
ences between samples (Fig. 2B).

Interestingly, the most up-regulated DEGs were iden-
tified in the Flower/Leaf comparison with 5935 genes
(Fig. 2B; Table 2). In comparison, the least up-regulated
DEGs belonged to the Leaf/Stem comparison with 1970
genes (Fig. 2B; Table 2). In contrast, the most down-regu-
lated DEGs were identified in the Leaf/Stem comparison
with 4769 genes while the least down-regulated DEGs
were from the Flower/Leaf comparison with 1881 genes
(Fig. 2B; Table 2).

Identification of DEGs with specifically high-

or low-expression in each plant tissue type

As there were three different hemp tissues in this analy-
sis, pairwise comparisons would be unable to directly
identify genes that are specifically induced or repressed
in one specific tissue type. To address this limitation,
the DEGs identified from each pairwise comparison
were plotted into Venn diagrams. The shared DEGs in
each Venn diagram represent genes that are specifically

induced or repressed in each tissue type, as compared
to the other plant tissues (Fig. 3A, Table S2). From this
analysis, we found that flowers had the most DEGs with
tissue-specific high expression and the least DEGs with
tissue-specific low expression (Fig. 3A). On the other
hand, leaf samples had the least DEGs with high expres-
sion and most DEGs with low expression (Fig. 3A). This
corroborates with a previous study, which also showed
that female Cannabis flowers have more up-regulated
DEGs than other plant organs (Braich et al. 2019).

The expression pattern of these tissue-specific DEGs
was visualized in a hierarchical clustering heat map, which
revealed six gene clusters (Fig. 3B, Table S3). Gene cluster
1 was enriched in the flower and leaf (Fig. 3B). Cluster 2
was specifically induced in leaf samples, while cluster 3
was up-regulated in both leaf and stem samples (Fig. 3B).
Cluster 4 was enriched in only the stem, but cluster 5
was enriched in both flower and stem (Fig. 3B). Cluster 6
which is the largest gene cluster was highly expressed in
only the flower samples (Fig. 3B). The highly expressed
genes in flower samples may be attributed to the abun-
dance of trichomes on female flowers, as a previous study
showed overlapping expression profiles between female
flowers and trichomes (Braich et al. 2019).

Tissue-specific enrichment of GO terms and KEGG
pathways

Although our RNA-seq is aligned to the Cannabis sativa
reference genome c¢sI0 and other Cannabis reference
genomes are available (van Bakel et al. 2011; Cai et al.
2021), GO term analysis of Cannabis genes is not read-
ily available. As such, we performed a BLASTP search
of each DEG’s protein sequence against the Arabidop-
sis TAIR10 database to identify close orthologs of each
hemp Cheungsam gene. E-value < 0.05 was used to ensure
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Fig. 2 Comparison of transcriptomes between different tissue types. A Principal component analysis (PCA) plot of sample triplicates. PC1, principal
component 1. PC2, Principal component 2. B Volcano plots for all sample comparisons. FPKM values were compared between two samples. Each
volcano plot shows the distribution of fold change and Student’s t-test for all transcripts. Differentially expressed genes (DEGs) were identified

with fold change > 2 or fold change < 0.5 and P-value < 0.05. Number of up- and down-regulated DEGs are indicated in each plot

Table 2 Number of up- and down-regulated DEGs in
comparisons between different tissue types

Number of DEGs Flower/Leaf Leaf/Stem Stem/Flower
comparison comparison comparison

Up-regulated 5935 1970 3044

Down-regulated 1881 4769 4074

high homology in identifying the Arabidopsis ortholog
(Table S4). Identification of Arabidopsis orthologs was
successful for most DEGs, as more than 85% of DEGs
per gene cluster were mapped to an Arabidopsis ortholog
(Table 3, Table S4). Furthermore, gene cluster 6 had the
largest number of DEGs with no Arabidopsis orthologs
(No Hit, Table 3), indicating that flower samples may
express more genes that are unique to Cannabis.

The Arabidopsis orthologs are subsequently used
to identify biological process (BP) GO terms that are
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Table 3 Number of orthologs identified per gene cluster

Number of DEGs Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
TAIR10 ortholog 187 (93.5%) 1219 (92.9%) 365 (85.1%) 2043 (90.6%) 1208 (93.7%) 2674 (93.3%)
No hit 0 13 8 34 15 44
Pseudogene 8 33 14 64 47 86

INcRNA 3 30 29 93 19 51

snoRNA 1 8 13 15 0 5

sNRNA 1 1 0 2 0 4

tRNA 0 9 0 4 0 2

Total DEGs 200 1312 429 2255 1289 2866

specifically induced in each gene cluster (Table S5). Gene
cluster 2 consists of DEGs that were highly expressed in
leaf samples, which corresponded with GO terms related
to photosynthesis and chloroplasts, such as “photosyn-
thesis” and “chlorophyll metabolic process” (green stars,
Fig. 4). In contrast, gene cluster 4 comprises of DEGs
with high expression in stem samples and were enriched
in GO terms related to plant cell wall and vasculature
development, including “plant-type secondary cell wall
biogenesis” and “xylem development” (yellow stars,
Fig. 4). Importantly, gene cluster 6 contains DEGs that
were enriched in flowers and were related to GO terms
involved in fatty acid biosynthesis and metabolism (red
stars, Fig. 4). GO terms related to cell division were also
identified in cluster 6, such as “meiotic cell cycle process”
and “mitotic cell cycle” (pink stars, Fig. 4). Interestingly,
the “flavonoid biosynthetic process” GO term was also
found to be specific to flower samples (blue star, Fig. 4).
While GO terms were also identified in gene clusters 1,
3, and 5, which were expressed in multiple tissue types,
their enrichment was less significant (Fig. 4).
Furthermore, the Arabidopsis orthologs were used
to identify KEGG pathways from each gene cluster
(Table S6). Leaf-specific DEGs in gene cluster 2 were
associated with KEGG pathways related to photosynthe-
sis like “photosynthesis — antenna proteins” and “carbon
fixation in photosynthetic organisms” (green stars, Fig.
S2). Interestingly, stem-specific DEGs in cluster 4 were
related to “phenylpropanoid biosynthesis” and “stilbe-
noid, diarylheptanoid, and gingerol biosynthesis” (yel-
low stars, Fig. S2). DEGs in gene cluster 5, which were
up-regulated in the flower and stem, were involved in
amino acid metabolism such as “biosynthesis of amino
acids” and “alanine, aspartate, and glutamate metabo-
lism” (light blue stars, Fig. S2). Moreover, KEGG path-
ways related to “carbon metabolism” and “glycolysis/
gluconeogenesis” were also identified in cluster 5 (pink
stars, Fig. S2). Lastly, KEGG pathways that are specific
to flower samples in gene cluster 6 were related to “fatty

acid biosynthesis/metabolism” (red stars) as well as “fla-
vonoid biosynthesis” (blue star, Fig. S2). Conversely, gene
clusters 1 (up-regulated in flower and leaf) and 3 (up-reg-
ulated in leaf and stem) did not correlate to any biologi-
cally meaningful KEGG pathway (Fig. S2).

Analysis of cannabinoid biosynthetic pathway in each
tissue type of hemp Cheungsam

While both GO term and KEGG pathway analyses iden-
tified fatty acid biosynthesis and metabolism to be spe-
cifically enriched in flowers of hemp Cheungsam, the
analyses did not identify cannabinoid biosynthesis. This
can be explained by the lack of Arabidopsis orthologs for
cannabinoid biosynthetic pathway genes and the relative
exclusivity of cannabinoid biosynthesis to a small number
of organisms. While cannabinoid biosynthesis was ini-
tially thought to be specific to C. sativa, it is now known
that other plants, such as Rhododendron dauricum and
Radula marginata, also have cannabinoid biosynthetic
pathway genes (Giilck and Meller 2020).

In hemp Cheungsam, many of the cannabinoid bio-
synthetic pathway genes were specifically expressed in
the flowers (Fig. 5, Table S7). These include orthologs
of genes encoding acyl-activating enzyme (AAE), olive-
tol synthase (OLS)/tetraketide synthase (TKS), olive-
tolic acid cyclase (OAC), and aromatic prenyltransferase
(PT), which are responsible for generating the precur-
sors for cannabinoid production (Fig. 5). Interestingly,
7 out of the 16 AAE orthologs in hemp Cheungsam
were specifically expressed in the flowers as compared
to other tissues (Fig. 5), indicating that these AAEs are
crucial for cannabinoid biosynthesis. In contrast, the C.
sativa marijuana cultivar Purple Kush displayed similar
expression levels of AAE] and AAE3 in stems, flowers,
and other plant tissues (van Bakel et al. 2011). This sug-
gests that gene expression patterns in hemp Cheungsam
may differ from other varieties of C. sativa. The expres-
sion of all downstream genes OLS/TKS, OAC, PT, and
CBDA/THCA/CBCA synthases (CBDAS, THCAS, and
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CBCAS) were highly specific to the flowers, indicat-
ing that cannabinoid biosynthesis occurs mostly in the
flowers of hemp Cheungsam (Fig. 5). This is consistent
with the transcriptome of C. sativa Purple Kush (van
Bakel et al. 2011) and in agreement with the knowledge
that cannabinoid biosynthesis predominantly occurs in
the glandular trichomes of female flowers of Cannabis
(Zager et al. 2019).

While most cannabinoid biosynthetic pathway genes
are specific to flowers, we noted that the overall expres-
sion levels may vary between orthologs. For example,
OLS/TKS orthologs 115699293 and 115700696 have high
FPKM values, while unigene 115704317 has low expres-
sion even in the flowers (Fig. 5). This suggests that uni-
genes 115699293 and 115700696 are likely to be the main
OLS/TKS orthologs in hemp Cheungsam. By comparing
the total FPKM value across all tissue types (flower, leaf,
and stem), orthologs with high and low expression lev-
els were identified (Fig. 5). Orthologs with high expres-
sion were found for AAE, OLS/TKS, and OAC, while GPS
showed moderate expression (Fig. 5). In contrast, all 7
PT showed either moderate or low expression (Fig. 5).
Downstream of CBGA, only the CBDAS ortholog
showed high expression (Fig. 5). In contrast, the THCAS/
CBCAS orthologs displayed moderate or low expression
(Fig. 5). Taken together, this suggests that cannabinoid
biosynthesis in hemp Cheungsam favors CBDA produc-
tion over THCA and CBCA, which is consistent with a
previous report showing high CBDA and low THCA
content (Moon et al. 2002).

Analysis of cannabinoid biosynthetic pathway genes
Acyl-activating enzyme (AAE)

The synthesis of cannabinoids begins with the conver-
sion of hexanoic acid to short-chain fatty acyl-coenzyme
A (CoA) precursor hexanoyl-CoA by AAE (Stout et al.
2012). Hemp Cheungsam has 16 AAE gene orthologs,
which showed high protein homology to known AAE
genes from the GenBank database (Fig. 6A). Only uni-
gene 115704844 was phylogenetically distant from the
other AAE genes (Fig. 6A). CsSAAEI was previously sug-
gested to be a hexanoyl-CoA synthase involved in the
cannabinoid biosynthetic pathway, based on its high
expression in glandular trichomes, hexanoyl-CoA

(See figure on next page.)
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synthase activity, and subcellular localization to the cyto-
plasm (Stout et al. 2012). As the subsequent step (pol-
yketide biosynthesis) in the cannabinoid biosynthetic
pathway occurs in the cytoplasm, AAEs that localize to
the peroxisome are implied to be involved in peroxiso-
mal B-oxidation (Shockey et al., 2003; De Azevedo Souza
et al., 2008; Stout et al. 2012).

As hemp Cheungsam unigene 115709751 showed high
protein sequence similarity to CsAAE1, we performed
multiple sequence alignment to compare their protein
sequences with the nearest homologs CsAAE12 and uni-
gene 115709750 (green box, Fig. 6A). Multiple sequence
alignment revealed that CsAAE1, CsSAAEI2, 115709750,
and 115709751 shared high homology in the AMP-
binding domain (Fig. 6B), which is required to activate
the carboxylic acid substrate (e.g. hexanoate) to form
adenylate as an acyl-AMP intermediate (Shockey and
Browse 2011). In addition to their high similarity, both
CsAAEI2 and 115709750 have the previously reported
C-terminus peroxisome targeting signal type 1 (PTS1)
sequence (blue boxes, Fig. 6B; Reumann 2004; Stout et al.
2012), suggesting that they localize to the peroxisome. In
contrast, 115709751 does not and likely localizes to the
cytoplasm, similar to CSAAE1 (Stout et al. 2012). The
presence of PTS1 was further confirmed using the PTS1
predictor (Neuberger et al. 2003), while the subcellular
localization was further verified using WoLF PSORT pre-
diction (Horton et al., 2007).

We further analyzed the multiple sequence align-
ments amongst each group of AAE homologs (yellow,
blue, red boxes, Fig. 6A). Multiple sequence alignments
showed that the other AAE groups contain the AMP-
binding domain and AMP-binding C-terminal domain
(Fig. S3, S4, S5). The C-terminus PTS1 sequence and
peroxisomal localization was also identified in CsAAE4,
CsAAE13, CsAAEI14, 115722340, and 115722980 (Fig.
S3), which corroborates with a previous study show-
ing CsAAE13 and CsAAEI4 having the PTS1 sequence
(Stout et al. 2012). As for homologs of CsAAES, all
homologs except 115695955 were predicted to contain
the PTS1 sequence and localize to the peroxisome (Fig.
S4). Lastly, the comparison between CsAAE7, CsAAESY,
115721297, 115702591, and 115713865 revealed that
both CsAAE9 and 115713865 contain the PTS1 sequence

Fig. 5 Expression of full-length cannabinoid biosynthetic pathway genes in various hemp Cheungsam plant tissues. Expression levels are
represented by both Z-score and FPKM value. Red color indicates high Z-score while blue color indicates low Z-score. Each row represents a gene
homolog. The number in each box represents FPKM value. Sum(FPKM) refers to total FPKM from flower, leaf, and stem samples. Flower-specific
gene is defined as expression in flowers samples being more than five-fold than leaf or stem samples. AAE, ACYL-ACTIVATING ENZYME. OLS/TKS,
OLIVETOL SYNTHASE/TETRAKETIDE SYNTHASE. OAC, OLIVETOLIC ACID CYCLASE. PT, AROMATIC PRENYLTRANSFERASE. CBDAS, CBDA synthase.

THCAS, THCA synthase. CBCAS, CBCA synthase. F, flower. L, leaf. S, stem
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for the peroxisome localization (Fig. S5). As for other
AAE homologs, only CsAAE6 was predicted to have
both PTS1 and peroxisomal localization (Fig. 6A). Taken
together, the results imply that 115709751 is the major
AAE ortholog in hemp Cheungsam, with high expression
that is specific to the flowers and no predicted peroxiso-
mal localization (Fig. 6A).

Olivetol synthase (OLS)/tetraketide synthase (TKS)
Hexanoyl-CoA undergoes sequential condensation with
three malonyl-CoA, which is catalyzed by OLS/TKS to
form a linear tetraketide intermediate followed by further
conversion to OLA or olivetol depending on the presence
or absence of OAC, respectively (Kearsey et al. 2020).

From the RNA-seq data set, we identified three putative
OLS/TKS genes (unigenes 115699293, 115700696, and
115704317). Among them, 115699293 and 115700696
matched 100% to each other at the amino acid sequence
level (Fig. 7), but not at nucleotide sequence level (Fig.
S6), indicating two copies of this gene at different loci
in hemp Cheungsam. These genes also showed 98.4%
amino acid sequence similarity to the database OLS/TKS
(CSTKS/CsOLS; Fig. 7). On the other hand, 115704317
showed low protein homology with these sequences,
with 36.6% similarity to CsOLS and 37.3% similarity to
115699293 and 115700696.

Conserved domain search associated these OLS/TKS
homologs with the chalcone synthase (CHS) superfam-
ily, as N-terminal and C-terminal domains of chalcone
and stilbene synthase were identified (Fig. 7). Moreover,
other domains related to 3-oxoacyl-[acyl-carrier-pro-
tein (ACP)] synthase III and FAE1/Type III polyketide
synthase-like protein were found in OLS/TKS homologs
(Fig. 7). The identification of CHS-related domains found
in OLS/TKS homologs can be explained by their high
sequence similarity, as seen in the comparison between
C. sativa OLS/TKS and Medicago sativa CHS (Taura
et al. 2009). The comparison between CHS and OLS
identified three conserved catalytic residues (Cysl157,
His297, Asn330; positions in CsOLS) for chain elon-
gation and nine active site residues (Alal25, Ser126,
Met187, Leul90, Ile248, Gly250, Leu257, Phe259, Ser332;
positions in CsOLS) for substrate specificity (Fig. 7; Taura
et al. 2009). All these residues were conserved in CsOLS
as well as in unigenes 115699293 and 115700696 (Fig. 7),

(See figure on next page.)
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suggesting that 115699293 and 115700696 are OLS/TKS
homologs in hemp Cheungsam. In contrast, the catalytic
residues were conserved in 115704317 but 4 out of 9
substrate-specificity residues differ from CsOLS (Fig. 7).
This suggests that while 115704317 may be catalytically
similar to OLS, it likely functions as a polyketide synthase
(PKS) that targets other substrates besides hexanoyl-CoA
and produces polyketides of different length (Jez et al.
2000).

Olivetolic acid cyclase (OAC)
The linear tetraketide intermediate is further cyclized
by OAC to produce OLA (Kearsey et al. 2020). Here,
we identified two OAC orthologs (unigenes 115723437,
115723438) that matched 100% to the GenBank data-
base CsOAC protein sequence (Fig. S7A). Interestingly,
the nucleotide sequences of both hemp OAC homologs
showed slight differences from the GenBank database
nucleotide sequence (Fig. S7B). This suggests that hemp
Cheungsam may have a single OAC gene with multiple
transcript variants or two highly conserved genes.
CsOAC, 115723437, and 115723438 contain the stress-
responsive dimeric a+[ barrel (DABB) domain (Fig.
S7), which makes them structurally similar to other pol-
yketide cyclases (Gagne et al. 2012). Enzymatic assay of
DABB domain-containing OAC from C. sativa trichomes
showed the conversion of hexanoyl-CoA to OLA, in the
presence of OLS/TKS (Gagne et al. 2012). This indicates
that the conserved DABB domain plays a significant role
for OLA production.

Aromatic prenyltransferase (PT)

OLA reacts with GPP to undergo prenylation by PT,
resulting in the biosynthesis of CBGA (Blatt-Janmaat
and Qu 2021). The RNA-seq elucidated 7 putative PT in
hemp Cheungsam. In C. sativa, CsPT1 and CsPT4 were
previously identified to be key players in the biosynthe-
sis of CBGA from OLA and GPP (Lim et al. 2021). In
contrast, CsPT2 was categorised as a clade II PT, which
was shown to be involved in tocopherol biosynthe-
sis (Collakova and DellaPenna, 2001, Rea et al. 2019).
Moreover, while CsPT3 belonged to the same phyloge-
netic clade as CsPT1 and CsPT4, it was demonstrated
to function in Cannflavin A and B biosynthesis in C.
sativa (Rea et al. 2019).

Fig. 6 AAE orthologs in hemp Cheungsam. A Phylogenetic tree of hemp Cheungsam and GenBank database AAE protein sequences. Solid lines
indicate actual phylogenetic distance. Dotted lines are used to align all terminals and do not represent phylogenetic distance. Colored boxes
indicate four main groups of AAE identified in the phylogenetic tree. Sum(FPKM) refers to total FPKM from flower, leaf, and stem samples. B Multiple
protein sequence alignment of CSAAET and CsAAE12 with hemp Cheungsam orthologs. Green bar, AMP-binding domain. Blue boxes highlight
C-terminus peroxisome targeting signal type 1 (PTS1; Reumann 2004). Blue P indicates predicted peroxisomal AAE
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Fig. 7 OLS/TKS orthologs of hemp Cheungsam. A Multiple protein sequence alignment of CsOLS/CsTKS with hemp Cheungsam orthologs.
Purple bar, Chalcone and stilbene synthase N-terminal domain. Pink bar, Chalcone and stilbene synthase C-terminal domain. Green bar,

3-Oxoacyl-[acyl-carrier-protein (ACP)] synthase lll domain. Yellow bar, ACP synthase C-terminal domain. Orange bar, FAE1/Type Il polyketide
synthase-like domain. Based on Taura et al. (2009), CHS catalytic triad residues are highlighted in blue, while residues that may be important

for substrate specificity or polyketide length are highlighted in red

Phylogenetic analysis of hemp Cheungsam PT
orthologs against GenBank database CsPT1 and CsPT4
revealed high protein similarity between CsPT1 with
unigene 115713215 (blue box, Fig. 8A). In addition,
CsPT4 formed a distinct clade with unigenes 115722991,
115713171, and 115713185 (red box, Fig. 8A).

Further sequence alignment was carried out for
CsPT1, CsPT4, and all PT orthologs, which indicated
a generally conserved UbiA prenyltransferase domain
in CsPT1, CsPT4, and all high similarity orthologs (red
and blue dots, Fig. 8B). The UbiA superfamily proteins
are characterized as intramembrane PT that func-
tion in various biological functions such as chlorophyll
biosynthesis, tocopherol biosynthesis, and secondary
metabolism to produce phytoalexins and alkaloids for
plant defense (Li 2016). CsPTs, which are homogentisate
(HG) PTs, typically contain the conserved aspartate-
rich motifs, NQxxDxxxD and KDxxDxxGD (de Bruijn
et al. 2020). Interestingly, all putative PT genes in hemp
Cheungsam contain the NQxxDxxxD motif (blue region,
Fig. 8), but the KDxxDxxGD motif was missing from
115722991 (orange region, Fig. 8). These motifs function

in regulating Mg?" ions that stabilize the pyrophos-
phate component of prenyl donors for further reaction
(de Bruijn et al. 2020). Also, PTs from the HG family
have been shown to localize in the plastids (Sukumaran
et al. 2018; Yang et al. 2018). As unigenes 115713171,
115713185, and 115713215 (Fig. 8) have high homology
with CsPT1/4 and contain the conserved aspartate-rich
motifs, it is possible that they are functional aromatic
PTs that catalyze the conversion of OLA to CBGA in
hemp Cheungsam.

Cannabinoid oxidocyclase (CBCAS, CBDAS, THCAS)

CBCAS, CBDAS, and THCAS are cannabinoid oxidocy-
clases that use CBGA as a substrate for the conversion
to CBCA, CBDA and THCA (Jalali et al. 2019; Melzer
et al. 2022). The RNA-seq data set has elucidated the fol-
lowing putative genes: four CBCAS, one THCAS, and
one CBDAS (Fig. 9A). Multiple sequence alignment of
the protein sequences showed that GenBank CsCBCAS
shared high protein homology with unigenes 115696909,
115697880, 115697886, and 115698060 (Fig. 9B). More-
over, CsCBDAS matched 100% to unigene 115697762
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Fig. 8 PT orthologs in hemp Cheungsam. A Phylogenetic tree of protein sequences of CsPT1, CsPT4, and hemp Cheungsam PT orthologs. Red
and blue boxes indicate close orthologs of CsPT4 and CsPT1, respectively. B Multiple sequence alignment of all sequences in (A). Highlighted
sequences are conserved PT motifs: NOxxDxxxD (blue), KDxxDxxGD (orange) (de Bruijn et al. 2020). Green bar, UbiA domain. CsPT1 ortholog, blue

circle. CsPT4 ortholog, red circle
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Fig. 9 Cannabinoid oxidocyclase orthologs of hemp Cheungsam. A Phylogenetic tree of protein sequences of CsCBCAS, CsCBDAS, and CsTHCAS
with orthologs. B Multiple sequence alignment of all sequences in (A). Green bar, FAD-binding domain. Yellow bar, BBE-like domain. Blue circle,
CBCAS homolog. Green circle, CBDAS homolog. Red circle, THCAS homolog. Closed circles represent full-length sequences with stop codons. Open
circles represent partial sequences
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(Fig. 9A, B). As unigene 115696884 showed high simi-
larity to both CsCBCAS (87.9%) and CsTHCAS (89.0%)
(Fig. 9A), further sequence analysis was needed to eluci-
date its function and identity.

CBDAS, THCAS, and CBCAS are known to belong
to the Berberine Bridge Enzyme (BBE)-like gene fam-
ily (Sirikantaramas et al. 2004). CBDAS, THCAS, and
CBCAS also feature conserved domains of the BBE-
like family, including the Flavin Adenin Dinucleo-
tide (FAD) binding domain and a C-terminal BBE-like
domain (Fig. 9B; van Velzen and Schranz, 2021). These
two main domains (FAD-binding domain and BBE-like
domain) were found in most of cannabinoid oxidocy-
clase orthologs of hemp Cheungsam (Fig. 9B). However,
N-terminal truncation resulted in unigenes 115696909
and 115698060 lacking the FAD-binding domain, while
C-terminal truncation resulted in unigenes 115696909
and 115697886 lacking the BBE-like domain (Fig. 9B),
suggesting that these unigenes are partial sequences and
do not correspond to functional cannabinoid oxidocy-
clases. All other hemp Cheungsam cannabinoid oxido-
cyclase sequences were highly conserved with CBDAS,
THCAS, or CBDAS, suggesting that they are full-length
oxidocyclases (Fig. 9B). However, it is important to note
that expression of the full-length oxidocyclase homologs
were different, as unigene 115697762 (CBDAS homolog)
showed more than seven-fold higher expression than
unigenes 115696884 (THCAS homolog) and 115697880
(CBCAS homolog) (Fig. 5). This was consistent with the
high CBDA and low THCA content of hemp Cheungsam
(Moon et al. 2002).

To elucidate the identity of 115696884, we com-
pared specific amino acid residues at the shared active
site between CsCBDAS, CsTHCAS, and CsCBCAS as
identified by Lim et al. (2021). While CsCBDAS, CsTH-
CAS, and CsCBCAS share a generally similar amino
acid sequence, specific residues at the active site may be
used to differentiate between the cannabinoid oxidocy-
clases (red boxes, Fig. 9B; Lim et al. 2021). The multiple
sequence alignment indicated that these amino acid resi-
dues in 115696884 were mostly similar to CsSTHCAS,
including exact matches at GIn69, Lys378, Val415, and
Ser448 (blue highlights, Fig. 9B). Other residue changes in
115696884 were of similar chemical properties as CsTH-
CAS: Phe290 (115696884) was non-polar like Met290
(CSTHCAS), while Arg377 (115696884) had a positively
charged side chain like Lys377 (CsTHCAS) (blue high-
lights, Fig. 9B). Besides these, 115696884 had two other
residue changes that did not match CsTHCAS: Ala379
to Thr379 and Ile446 to Thr446 (red highlights, Fig. 9B).
In contrast, 115696884 had three mismatches to CsCB-
CAS: Phe290 to Thr290, Ala379 to Thr379, and Ile446 to
Thr446 (Fig. 9B). These amino acid differences suggest
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that unigene 115696884 may function more closely to
CsTHCAS. Furthermore, the small but detectable amount
of THCA in hemp Cheungsam (0.34%, Moon et al. 2002)
suggests that unigene 115696884, despite its relatively low
expression in flowers (Fig. 5), may be a functional but low-
activity THCAS. However, further work is required to
investigate if unigene 115696884 functions as a THCAS
or other cannabinoid oxidocyclase.

Conclusion

All in all, the transcriptome analyses have shown that
hemp Cheungsam expressed most cannabinoid biosyn-
thetic pathway genes specifically in its flowers, similar to
other Cannabis cultivars. Further investigation of each
gene’s expression level suggests preferential biosynthesis
of CBDA, compared to THCA and CBCA production.
Moreover, sequence analysis elucidated key orthologs
for each gene of the cannabinoid biosynthetic pathway in
hemp Cheungsam.
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