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Abstract 

Background Cannabis sativa L. also known as industrial hemp, is primarily cultivated as source material for can-
nabinoids cannabidiol (CBD) and ∆9-tetrahydrocannabinol (∆9-THC). Pesticide contamination during plant growth is 
a common issue in the cannabis industry which can render plant biomass and products made from contaminated 
material unusable. Remediation strategies to ensure safety compliance are vital to the industry, and special con-
sideration should be given to methods that are non-destructive to concomitant cannabinoids. Preparative liquid 
chromatography (PLC) is an attractive strategy for remediating pesticide contaminants while also facilitating targeted 
isolation cannabinoids in cannabis biomass.

Methods The present study evaluated the benchtop-scale suitability of pesticide remediation by liquid chromato-
graphic eluent fractionation, by comparing retention times of 11 pesticides relative to 26 cannabinoids. The ten pesti-
cides evaluated for retention times are clothianidin, imidacloprid, piperonyl butoxide, pyrethrins (I/II mixture), diuron, 
permethrin, boscalid, carbaryl, spinosyn A, and myclobutanil. Analytes were separated prior to quantification on an 
Agilent Infinity II 1260 high performance liquid chromatography with diode array detection (HPLC-DAD). The detec-
tion wavelengths used were 208, 220, 230, and 240 nm. Primary studies were performed using an Agilent InfinityLab 
Poroshell 120 EC-C18 3.0 × 50 mm column with 2.7 μm particle diameter, using a binary gradient. Preliminary studies 
on Phenomenex Luna 10 μm C18 PREP stationary phase were performed using a 150 × 4.6 mm column.

Results The retention times of standards and cannabis matrices were evaluated. The matrices used were raw canna-
bis flower, ethanol crude extract,  CO2 crude extract, distillate, distillation mother liquors, and distillation bottoms. The 
pesticides clothianidin, imidacloprid, carbaryl, diuron, spinosyn A, and myclobutanil eluted in the first 3.6 min, and all 
cannabinoids (except for 7-OH-CBD) eluted in the final 12.6 min of the 19-minute gradient for all matrices evaluated. 
The elution times of 7-OH-CBD and boscalid were 3.44 and 3.55 min, respectively.

Discussion 7-OH-CBD is a metabolite of CBD and was not observed in the cannabis matrices evaluated. Thus, the 
present method is suitable for separating 7/11 pesticides and 25/26 cannabinoids tested in the six cannabis matrices 
tested. 7-OH-CBD, pyrethrins I and II  (RTA: 6.8 min,  RTB: 10.5 min), permethrin  (RTA: 11.9 min,  RTB: 12.2 min), and pipero-
nyl butoxide  (RTA: 8.3 min,  RTB: 11.7 min), will require additional fractionation or purification steps.

Conclusions The benchtop method was demonstrated have congruent elution profiles using preparative-scale 
stationary phase. The resolution of pesticides from cannabinoids in this method indicates that eluent fractionation is a 
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highly attractive industrial solution for pesticide remediation of contaminated cannabis materials and targeted isola-
tion of cannabinoids.

Keywords Cannabis, Cannabinoids, Pesticide remediation, Adsorptive separation, High-performance liquid 
chromatography, Preparative Liquid Chromatography

Background
Cannabis sativa L.(cannabis) has been used for over 6000 
years for medicinal, utilitarian, recreational, and religious 
purposes (Bonini et  al. 2018; Luca et  al. 2020). Canna-
bis produces a number of pharmacoactive compounds, 
including phytocannabinoids, terpenoids, flavonoids, 
and alkaloids (Brenneisen 2007). Phytocannabinoids are 
terpenophenolic molecules; perhaps the best known are 
∆9-tetrahydrocannabinol (∆9-THC) and the non-psy-
choactive cannabidiol (CBD) (Citti et al. 2016). THC pro-
duces the recreational “high” associated with marijuana, 
and CBD is a non-psychoactive analog that is reported 
to have antiemetic, anti-seizure, and anti-inflammatory 
properties (Sandler et al. 2019). C. sativa can be broadly 
differentiated into two types: hemp and recreational or 
medicinal marijuana (McPartland and Guy 2017; Mudge 
et al. 2017). The distinction between marijuana and hemp 
is defined by the relative THC content on the dry weight 
basis. Hemp is characterized as having less than 0.3% 
(w/w) THC, whereas marijuana has THC in amounts 
above that threshold (Rustichelli et  al. 1998; Small and 
Beckstead 1973; Hazekamp and Fischedick 2012). In 
general, hemp produces CBD in much greater amounts 
than marijuana, and is thus an important cash crop in the 
emerging cannabis industry (Nie et al. 2019). The molec-
ular structures of ∆9-THC and CBD are shown in Fig. 1.

Pesticide contamination of cannabis source material is 
a primary concern in the production of cannabis prod-
ucts, and acceptability criteria for the presence of pes-
ticides are regulated by state agencies (Subritzky et  al. 
2017). Although direct use of pesticides on hemp prod-
ucts is regulated, occasionally the plants are indirectly 
exposed to banned pesticides. Cannabis is a hyperaccu-
mulator; therefore, trace contamination of biomass is an 
issue when grown next to other crops (McPartland and 
McKernan 2017; Wu et  al. 2021). For example, hemp 

grown in proximity to other commodity crops can be 
contaminated by pesticides from those adjacent fields 
(López-Ruiz et al. 2022). This becomes problematic when 
the pesticides used are not accepted by commercial can-
nabis regulations and drift to the hemp crop. A repre-
sentative group of 11 banned pesticides was selected for 
use in this study, comprised of carbaryl, boscalid, spino-
syn A, imidacloprid, clothianidin, diuron, myclobutanil, 
piperonyl butoxide, pyrethrins I and II, and permethrin 
(Pesticide 2022). Their structures are presented in Fig. 2.

Carbaryl, boscalid, spinosyn A, imidacloprid, clothiani-
din, diuron, myclobutanil, piperonyl butoxide, pyrethrins 
I and II, and permethrin are all pesticides banned from 
use in cannabis products (Pesticide 2022). Their high 
chemical and thermal stability make them difficult to 
remediate from contaminated plant and extract materi-
als, and remediation is further complicated by the com-
plex nature of the cannabis matrix (Wylie et al. 2020; do 
Amaral et  al. 2022). These 11 pesticides are ideal con-
taminants for demonstrating proof-of-concept of a liq-
uid chromatographic method for remediating pesticides 
at the benchtop scale, because of their varied chemical 
composition and unsuitability for cannabis material (Cra-
ven et al. 2019).

Cannabis products intended for consumption must be 
tested to ensure compliance with state regulatory agen-
cies; products with pesticide content exceeding accepta-
bility criteria must be remediated prior to sale (Subritzky 
et al. 2017; Marijuana 2020; Geesaman n.d. ). PLC is an 
attractive remediation strategy that separates sample 
components using a liquid-solid interface, where solvent 
composition is modulated as sample moves through a 
column, and operates on the same principles as analyti-
cal High-Performance Liquid Chromatography (HPLC) 
(De Luca et  al. 2022). The purpose of this study was to 
develop a benchtop-scale HPLC method for separating 

Fig. 1 Molecular structures of A CBD and B ∆9-THC, two high value cannabinoids that are produced in high abundance in the cannabis plant
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11 pesticides and 26 cannabinoids, and evaluate the theo-
retical suitability of the method for separating pesticides 
and cannabinoids from six industrial hemp processing 
matrices using preparative-scale liquid chromatography 

(PLC). Methods for both cannabinoid and pesticide 
quantitation have been reported using HPLC, but tar-
geted pesticide separation and assay for scale-up to PLC 
has not been reported (Craven et al. 2019; Atapattu and 

Fig. 2 Structures of pesticides investigated for the present HPLC-QQQ method. A pyrethrin I, B pyrethrin II, C permethrin, D diuron, E myclobutanil, 
F boscalid, G piperonyl butoxide, H clothianidin, I carbaryl, J imidacloprid, K Spinosyn A
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Johnson 2020; López-Ruiz et al. 2022). Using a benchtop-
scale HPLC adds an element of novelty to this work by 
incorporating principles of green chemistry for develop-
ing preparative-scale liquid chromatography methods of 
interest to the broader industrial community.

Ideal pesticide remediation methods also maximize 
cannabinoid recovery in tandem, since cannabinoids are 
also present in sample matrices (Moulins et  al. 2018). 
Suitability of the present method for each pesticide was 
evaluated based on observed retention time. A shorter 
retention time than that of the cannabinoids in matrix 
indicates that the method is suitable, whereas pesticides 
with retention times longer than cannabinoids would 
require additional separation steps. Pesticides were evalu-
ated as single samples and retention times measured. The 
suitability of benchtop-scale method on six processing 
matrices was evaluated: flower,  CO2crude extract, etha-
nol crude extract, distillate, distillation mother liquor, 
and distillation bottoms. These matrices were selected as 
representative steps in industrial processing based on rec-
ommendation from Panacea Life Sciences. Flower, crude 
extracts, and distillates having the most direct path to 
commercial sale, and the distillation mother liquor and 
bottoms are processing side-products with potentially 
commercializable components but require additional pro-
cessing to recover (Gould and The Cannabis Crop 2015; 
Aizpurua-Olaizola et al. 2014; King 2019).

A limitation of the results reported in "Demonstration 
of congruent separations on 10 μm luna C18" section is 
that analytes were separated on a column with Agilent 
Poroshell 120 2.7  μm C18 media (Neue 1997). Column 
dimensions and packing density are different between 
benchtop and preparative scale columns, but particle 
size is a key consideration in stationary phase selec-
tion (Bączek et al. 2005; Altiero 2018). 2.7 μm Poroshell 
stationary phase is not available for bulk purchase and 
cannot be used for PLC scale up. The stationary phase 
for future preparative-scale separations indicated by 
this study will be Phenomenex Luna 10  μm C18 PREP 
media. Preliminary experiments have been performed 
on a 150 × 4.6 mm Phenomenex Luna 10 μm C18 PREP 
column to better evaluate suitability of the method. The 
larger particle size of Luna PREP media is expected to 
decrease operating pressure but also decrease method 
resolution (Molnár 2005; Neue and Kele 2007; Morley 
and Minceva 2020). Lower resolution is not a critical 
concern for the proposed preparative method, as long 
as relative retention times between pesticides and can-
nabinoids are sufficiently different. Preliminary results 
collected on the 150 × 4.6  mm 10  μm Luna column are 
reported to demonstrate congruence between the two 
packing media.

Methods
Materials
HPLC-grade acetonitrile (PN A998-4) was purchased 
from Fisher Scientific. Carbaryl (PN 24,139), boscalid 
(PN 24,135), spinosyn (PN 25,649), diuron (PN 24,040), 
myclobutanil (PN 24,100), clothianidin (PN 29,605), 
pyrethrins I/II (PN 25,814), piperonyl butoxide (PN 
25,820), imidacloprid (PN 24,130), and permethrin (PN 
23,821) were purchased from Cayman Chemical, Ann 
Arbor, Michigan. EN Method 15,662 (QuECHERS, PN 
5982 − 5650) salts were purchased from Agilent Tech-
nologies, Santa Clara, California. A Sigma Millipore 
Direct-Q 5 water filtration system was used to deliver 
18.0 mΩ•cm water. Cannabis matrix samples were 
donated by Panacea Life Sciences, Golden, CO.

Reference materials of ∆8-tetrahydrocannabinol (∆8-
THC; PN: ISO60158), ∆9-tetrahydrocannabinol (∆9-
THC, PN: ISO60157), ∆9-Tetrahydrocannabinolic acid 
(∆9-THCA; PN: 33,448), ∆9-tetrahydrocannabutol 
(∆9-THCB; PN: 33,078), ∆9-tetrahydrocannabihexol 
(∆9-THCH; PN: 33,352), ∆9-tetrahydrocannabiphorol 
(∆9-THCP; PN: 30,171), ∆9-tetrahydrocannabivarin 
(∆9-THCV; PN: 18,091), ∆9-tetrahydrocannabivarinic 
acid (∆9-THCVA; PN: 21,259), 7-OH-cannabidiol 
(7-OH-CBD; PN: 36,517), cannabichromene (CBC; PN: 
26,252), cannabichromeorcin (CBCO; PN: 21,742), can-
nabichromevarin (CBCV; PN: 21,974), cannabichrom-
evarinic acid (CBCVA; PN: 32,718), cannabidiol (CBD; 
PN: 21,259), cannabidiolic acid (CBDA; PN: 18,090), 
cannabidiolic acid methyl ester (CBDA-ME; PN: 
28,347), cannabidiphorol (CBDP; PN: 30,169 ), can-
nabidivarin (CBDV; PN: 20,165), cannabielsoin (CBE; 
PN: 21,092), cannabigerol (CBG, PN: 20,164), cannab-
igerolic acid (CBGA PN: 20,019), cannabigerol quinone 
acid (CBGAQ, PN: 31,772), cannabigerovarin (CBGV 
PN: 29,117), cannabigerovarinic acid (CBGVA; PN: 
25,469), cannabicyclol (CBL; PN: 22,036), cannabinol 
(CBN; PN: 25,495), cannabicitran (CBT; PN: 21,295), 
and olivetol (PN: 35,202) were purchased from Cayman 
Chemical, Ann Arbor, Michigan.

Standard preparation
All standards were prepared at ambient temperatures 
and stored at -20 °C. Stock standard of 250 µg/mL per 
pesticide was prepared in acetonitrile. The working 
standard was prepared by diluting the stock 1:3 in ace-
tonitrile. Calibration standards were prepared by dilu-
tion of the working standard and contained 25% matrix 
blank. Retention time check standards were prepared 
by dilution of CRMs in 10.0 mL class A volumetric 
flasks to nominal concentrations of 100 ug/mL.
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Sample preparation
A mass of 100 ± 10 mg of sample were massed into 50 
mL falcon tubes, soaked in 10 mL water, and vortexed. 
The same mass was used for all matrices evaluated. 
Then, 10 mL acetonitrile, 4  g  MgSO4, 1  g NaCl, 0.5  g 
disodium citrate sesquihydrate, 1 g sodium citrate, and 
ceramic agitator were added to the samples. Samples 
were then rigorously vortexed for 1  min, centrifuged, 
and the acetonitrile (top) layer was decanted and trans-
ferred into 1.5 mL HPLC vials. Samples were prepared 
in triplicate.

Instrument method
Analytes were separated prior to quantification on an 
Agilent Infinity II 1260 high performance liquid chro-
matography with diode array detection (HPLC-DAD). 
The detection wavelengths used were 208, 220, 230, and 
240 nm. Primary studies were performed using an Agilent 
InfinityLab Poroshell 120 EC-C18 3.0 × 50  mm column 
with 2.7  μm particle diameter (PN: 699975-302), using 
a binary gradient. Preliminary studies on Phenomenex 
Luna 10 μm C18 PREP stationary phase were performed 
using a 150 × 4.6 mm column (PN: 00G-4616-E0). Mobile 
phase A was 0.1% (v/v) phosphoric in water. Mobile 
phase B was 0.1% (v/v) phosphoric acid in acetonitrile. 
The injection volume was 1 µL. The method gradient 
was 60% B, 0 min; 60% B, 1 min; 80% B, 8 min; 100% B, 
10 min; 100%, 14.5 min; 60% B, 15 min; 19 min runtime. 
The method was calibrated using the calibration standard 
solutions  (R2 > 0.999, all cases).

Measurements were quantitated using an external 
standard calibration. The instrument signal used was 
defined as the integrated peak area in the DAD chroma-
togram with units of absorbance over time (mAU*s).

Results and discussion
Analyte retention on 2.7 μm Poroshell C18
As expected, carbaryl, boscalid, and spinosyn A eluted 
before the more hydrophobic cannabinoids during 
spike/recovery trials. Clothianidin, imidacloprid, carba-
ryl, olivetol, diuron, spinosyn A, boscalid, and myclob-
utanil eluted in the first 3.6  min, and all cannabinoids 
(except for 7-OH-CBD) eluted in the final 12.6  min of 
the 19-minute gradient for all matrices evaluated. The 
retention time of 7-OH-CBD (3.441 min) is reported in 
this work although is a metabolite of CBD and therefore 
not expected in cannabis matrices. Thus, the present 
method is suitable for 7/11 pesticides and 25/26 can-
nabinoids evaluated, by fractionating the first 19% of elu-
ent to waste. 7-OH-CBD, and the pesticides pyrethrins I 
and II, permethrin, and piperonyl butoxide will require 

additional purification or fraction collection steps fol-
lowing the present gradient. Retention times for all 
analytes are shown in Table 1 and organized both alpha-
betically and by elution time.

Table 1 Elution times for all analytes, organized alphabetically 
and by elution time. Clothianidin, imidacloprid, carbaryl, diuron, 
spinosyn A, and myclobutanil elute before all cannabinoids 
and the present method is suitable for remediating them by 
fractionating the first 19% of eluent to waste. Retention times 
were set at ± 2%

Analyte 
(Alphabetical)

Retention 
Time (min)

Analyte
(Elution order)

Retention 
Time (min)

1 ∆8-THC 11.510 Clothianidin 1.451

2 ∆9-THC 11.610 Imidacloprid 1.492

3 ∆9-THCA 12.320 Carbaryl 2.160

4 ∆9-THCB 10.678 Diuron 2.314

5 ∆9-THCH 12.331 Spinosyn A 2.480

6 ∆9-THCP 12.915 Myclobutanil 3.258

7 ∆9-THCV 9.160 7-OH-CBD 3.441

8 ∆9-THCVA 10.646 Boscalid 3.550

9 7-OH-CBD 3.441 CBGV 6.440

10 Boscalid 3.550 CBDV 6.490

11 Carbaryl 2.160 CBGVA 6.500

12 CBC 12.180 Pyrethrin Peak A 6.829

13 CBCO 7.866 CBGQA 7.136

14 CBCVA 11.224 CBE 7.636

15 CBD 8.900 CBCO 7.866

16 CBDA 8.000 CBDA 8.000

17 CBDA-ME 12.314 Pip. But. Peak A 8.327

18 CBDP 11.269 CBGA 8.340

19 CBDV 6.490 CBG 8.704

20 CBE 7.636 CBD 8.900

21 CBG 8.704 THCV 9.160

22 CBGA 8.340 Pyrethrin Peak B 10.480

23 CBGQA 7.136 THCVA 10.646

24 CBGV 6.440 ∆9-THCB 10.678

25 CBGVA 6.500 CBN 10.900

26 CBL 12.098 CBCVA 11.224

27 CBN 10.900 CBDP 11.269

28 CBTC 13.178 ∆8-THC 11.510

29 Clothianidin 1.451 ∆9-THC 11.610

30 Diuron 2.314 Pip. But. Peak B 11.748

31 Imidacloprid 1.492 Permethrin Peak A 11.880

32 Myclobutanil 3.258 CBL 12.098

33 Permethrin Peak A 11.880 Permethrin Peak B 12.175

34 Permethrin Peak B 12.175 CBC 12.180

35 Pip. But. Peak A 8.327 CBDA-ME 12.314

36 Pip. But. Peak B 11.748 ∆9-THCA 12.320

37 Pyrethrin Peak A 6.829 ∆9-THCH 12.331

38 Pyrethrin Peak B 10.480 ∆9-THCP 12.915

39 Spinosyn A 2.480 CBTC 13.178
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Multiple peaks were observed in Pyrethrins, piperonyl 
butoxide, and permethrin standards. Piperonyl butoxide 
is sold as a ≥ 95% liquid and permethrin is sold as a 95% 
solid formulation, and it is expected that additional peak 
is a formulation impurity. Pyrethrin is sold as a mixture 
of pyrethrins I and II. For cases where multiple peaks 
were observed, peaks were identified as A and B because 
their identities could not be deduced from the DAD data 
alone. It is hypothesized that pyrethrin and piperonyl 
butoxide peak identities may be elucidated using mass 
spectrometric methods but this falls outside the scope of 
the present paper.

Demonstration of congruent separations on 10 μm luna 
C18
Preliminary injections using larger particle size were 
done using 11-component pesticide, and 26-component 
cannabinoid mixtures. All components were evaluated, 
including those deemed unsuitable on the 2.7  μm col-
umn, for comparison between the two stationary phases. 
Analyte concentrations and scale were not normalized 
which causes the difference in peak size. Pesticide and 
cannabinoid elution profiles are congruent to those in 
"Analyte retention on 2.7 µm Poroshell C18" section, in 
that cannabinoids elute late in the gradient, more polar 
pesticides elute earlier in the gradient, and some pesti-
cides peaks overlap with cannabinoids. Representative 

chromatograms are shown in Fig.  3. Chromatograms A 
and B used the instrument method reported in section. 
The solvent front and first eluting species are shifted right 
in the chromatogram, caused by the 5  cm longer path-
length through the column. The large peak occurring at 
11.1 min is likely unresolved late-eluting species such as 
CBTC and permethrin. Chromatograms C and D used a 
flow rate of 1.0 mL/min, causing shifts in retention times.

Matrix cannabinoid profiles
Cannabinoids were qualitatively identified in each of the 
spiked hemp matrices. The significance being that tar-
geted isolation of cannabinoids following pesticide reme-
diation is possible using PLC. The same mass of each 
matrix was used during sample preparation, although 
industrial preparations will scale separately due to the 
different relative concentrations of cannabinoids in each 
matrix. Raw flower has a smaller percent composition on 
a dry weight basis than extracts or distillates. Targeted 
isolation can be optimized by matrix selection, based 
on the qualitative profiles. It was expected that the ratio 
of acid-form to decarboxylated cannabinoids will be 
observed in greatest proportion in the raw flower sam-
ple, because the plant biomass is decarboxylated by heat-
ing prior to crude extraction. CBD/CBDA was observed 
in greatest relative abundance for each of the matrices 
except the distillation bottoms, where CBG occurs in 

Fig. 3 Representative chromatograms of cannabinoid (A and C) and pesticide (B and D) test samples. Chromatograms A and B used the 
instrument method reported in "Instrument method" section. The large peak occurring at 11.1 min is likely unresolved late-eluting species such as 
CBTC and permethrin. Chromatograms C and D used a flow rate of 1.0 mL/min, causing peaks to elute earlier
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greatest abundance. Representative chromatograms for 
each matrix are shown in Fig. 4.

Conclusion
The present study evaluated retention times of 11 pes-
ticides relative to 26 cannabinoids, for general suitabil-
ity of remediation by eluent fractionation with PLC. Six 
industrial cannabis processing matrices were used: flower, 
ethanol crude extract,  CO2 crude extract, distillate, distil-
lation mother liquor, and distillation bottoms. Clothiani-
din, imidacloprid, carbaryl, diuron, spinosyn, boscalid, and 
myclobutanil eluted in the first 3.6  min, and all cannabi-
noids (except for 7-OH-CBD) eluted in the final 12.6 min 
of the 19-minute gradient for all matrices evaluated. 
7-OH-CBD is a metabolite of CBD and is not expected 
in cannabis extracts. Thus, the present method is suit-
able for simple fractionation of 7/11 pesticides and 25/26 
cannabinoids evaluated on 2.7  μm C18 Poroshell media. 
7-OH-CBD, pyrethrins I and II, permethrin, and piperonyl 
butoxide will require additional purification beyond the 
present gradient. Complimentary injections were made on 

10 μm C18 PREP stationary phase and the elution profiles 
were congruent to those on the 2.7  μm media. The pos-
sibility of completely removing pesticides while retaining 
cannabinoids and other high-value matrix components for 
further processing makes PLC a highly attractive strategy 
for separating cannabinoids in large volume and industrial 
manufacturing of cannabis products.

Abbreviations
ACN  Acetonitrile
HPLC  High performance liquid chromatography
DAD  Diode array detection
CBD  Cannabidiol
CBN  Cannabinol
THC  ∆-9-tetrahydrocannabinol
MeOH  Methanol
CO2  Carbon dioxide
EtOH  Ethanol
CBDA  Cannabidiolic acid
CBG  Cannabigerol
CBTC  Cannabicitran
∆8-THC  ∆8-tetrahydrocannabinol
∆9-THCA  ∆9-tetrahydrocannabinolic acid
∆9-THCB  ∆9-tetrahydrocannabutol

Fig. 4 Representative chromatograms of A raw flower, B crude  CO2 extract, C crude ethanol extract, D CBD distillate, E mother liquor, and 
F distillation bottoms. Each matrix sample was spiked with carbaryl, boscalid, and spinosyn A for reference. The ratio of CBDA to CBD occurs in 
greatest proportion in the raw flower sample, because the biomass is decarboxylated with heat prior to crude extraction. CBD/CBDA was observed 
in greatest relative abundance for each of the matrices except the distillation bottoms, where CBG occurs in greatest abundance
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∆9-THCH  ∆9-tetrahydrocannabihexol
∆9-THCP  ∆9-tetrahydrocannabiphorol
∆9-THCV  ∆9-tetrahydrocannabivarin
∆9-THCVA  ∆9-tetrahydrocannabivarinic acid
7-OH-CBD  7-hydroxy-cannabidiol
CBC  Cannabichromene
CBCO  Cannabichromeorcin
CBCVA  Cannabichromivarinic acid
CBDA-ME  Cannabidiolic acid methyl ester
CBDP  Cannabidiphorol
CBDV  Cannabidivarin
CBE  Cannabielsoin
CBGA  Cannabigerolic acid
CBGQA  Cannabigerol quinone acid
CBGV  Cannabigerovarin
CBGVA  Cannabigerovarinic acid
CBL  Cannabicyclol
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